Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sunil K. Chattopadhyay, ${ }^{\text {a }}$ Ashoke Sharon, ${ }^{\text {b }}$ Umesh Yadav, ${ }^{\text {b }}$ Sachin Srivastava, ${ }^{\text {a }}$ Vijay K. Mehta ${ }^{\text {a }}$ and Prakas R. Maulik ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India, and ${ }^{\mathbf{b}}$ Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India

Correspondence e-mail:
maulik_prakas@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.105$
Data-to-parameter ratio $=8.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

A taxane diterpenoid from the needles of Taxus wallichiana

The title compound, 10,13-deacetyl-abeo-baccatin IV, $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{12}$, crystallized in space group $P 1$. The molecular structure shows that the B / C ring junction is trans-fused, while the A ring is in a syn conformation with respect to the C ring and anti with respect to the D ring. The conformations of the individual rings differ from each other. The molecule as a whole adopts a cage-type folded conformation. Intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, together with van der Waals interactions, stabilize the crystal structure.

Comment

Investigations on the taxoid constituents of different parts of Taxus wallichiana led to isolation of the title compound, (I). Taxoid (I) was isolated from the needles of T. wallichiana (Chattopadhyay et al., 1995). Considerable attention has been given to this type of diterpenoid molecule whose archetype is the paclitaxel ($\mathrm{Taxol}^{\mathrm{TM}}$), a promising cancer chemotherapeutic agent (Appendino, 1995). Although numerous X-ray investigations have been performed on this and related molecules, there is much heated debate about the active conformation of this anticancer drug (Mastropaolo et al., 1995, and references therein). This prompted us to undertake the present X-ray study of the title compound, (I), to determine its crystal structure and stereochemistry unequivocally.

(I)

Fig. 1 shows the structure of (I) with the atomic numbering scheme. Selected torsion angles of the terpenoid core of (I) are listed in Table 1. The molecule contains a three-ring fused system $A / B / C$ with an additional D ring attached to the ring C. The A ring is in a syn conformation with respect to the C ring and anti with respect to the D ring. The B / C junction is transfused due to the trans-axial dispositions of C 25 at C 8 and H 3 at C3. Thus, the molecule as a whole adopts a folded cage-type conformation. Least-squares plane calculations indicate that the seven-membered B ring adopts a boat conformation [the deviations of atoms C1, C2 and C9 are 1.078 (4), 1.289 (4) and 0.553 (4) \AA, respectively from the least-squares plane through

Received 16 October 2001 Accepted 5 November 2001 Online 10 November 2001

CIMAP Communication No. 2001-53Ja.

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity.
atoms C3, C8, C10 and C11]. The six-membered C ring is in an envelope conformation while the five-membered A ring is puckered to form an envelop. The molecular packing in the crystal shows that the hydroxyl groups are involved in both intra- and intermolecular hydrogen bonding of the type O $\mathrm{H} \cdots \mathrm{O}$. In addition, the packing further reveals the presence of intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. Thus, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, along with van der Waals forces, stabilize the solid-state structure.

Experimental

Compound (I) was isolated from methanol extracts of the needles of T. wallichiana following the reported protocols (Chattopadhyay et al., 1995). Diffraction quality crystals were grown at room temperature by slow evaporation of a methanolic solution.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{12}$	$Z=1$
$M_{r}=568.60$	$D_{x}=1.282 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$	Mo $K \alpha$ radiation
$a=8.957(1) \AA$	Cell parameters from 26
$b=9.667(1) \AA$	reflections
$c=9.827(1) \AA$	$\theta=5.0-9.2^{\circ}$
$\alpha=110.10(1)^{\circ}$	$\mu=0.10 \mathrm{~mm}^{-1}$
$\beta=92.42(1)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=110.39(1)^{\circ}$	Block, colourless
$V=736.2(1) \AA^{3}$	$0.48 \times 0.35 \times 0.33 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer $\theta-2 \omega$ scans
3060 measured reflections
3060 independent reflections
2941 reflections with $I>2 \sigma(I)$
$\theta_{\max }=25.0^{\circ}$
$h=-10 \rightarrow 1$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.105$
$S=1.04$
3060 reflections
372 parameters
H-atom parameters constrained

$$
k=-10 \rightarrow 10
$$

$l=-11 \rightarrow 11$
3 standard reflections every 97 reflections frequency: 60 min intensity decay: none

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C11-C1-C2-C3	27.8 (3)	C3-C8-C9-C10	48.8 (3)
C14-C1-C2-C3	-82.9 (3)	C8-C9-C10-C11	-53.1 (3)
$\mathrm{C} 15-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	152.90 (19)	C9-C10-C11-C12	146.7 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	130.6 (2)	C9-C10-C11-C1	-33.9 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	-96.5 (2)	C14-C1-C11-C12	-11.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 22$	58.0 (3)	C15-C1-C11-C12	106.5 (2)
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 22$	-74.2 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	-128.7 (2)
C2-C3-C4-C5	159.8 (2)	C14-C1-C11-C10	168.6 (2)
C8-C3-C4-C5	27.5 (3)	C15-C1-C11-C10	-73.0 (3)
C22-C4-C5-O4	10.3 (2)	C2-C1-C11-C10	51.8 (3)
C3-C4-C5-O4	-112.2 (2)	C10-C11-C12-C13	-179.3 (2)
C22-C4-C5-C6	126.1 (3)	C1-C11-C12-C13	1.2 (3)
C3-C4-C5-C6	3.6 (4)	C11-C12-C13-C14	10.4 (3)
O4-C5-C6-C7	104.3 (3)	C12-C13-C14-C1	-17.7 (3)
C4-C5-C6-C7	1.0 (4)	C11-C1-C14-C13	17.9 (3)
C5-C6-C7-C8	-38.1 (3)	C15-C1-C14-C13	-100.9 (3)
C6-C7-C8-C9	-176.44 (19)	C2-C1-C14-C13	135.0 (2)
C6-C7-C8-C3	66.2 (2)	C5-C4-C22-O4	-10.4 (2)
C4-C3-C8-C7	-60.0 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 22-\mathrm{O} 4$	108.8 (3)
C2-C3-C8-C7	165.76 (19)	$\mathrm{C} 4-\mathrm{C} 22-\mathrm{O} 4-\mathrm{C} 5$	11.0 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	177.9 (2)	C6-C5-O4-C22	-132.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	43.7 (2)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 4-\mathrm{C} 22$	-10.8 (2)
C7-C8-C9-C10	-66.2 (3)		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7 . . O1	0.82	2.02	2.740 (3)	146
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 11^{\text {i }}$	0.82	2.08	2.883 (3)	168
O8-H8 $\cdots{ }^{\text {a }}{ }^{\text {ii }}$	0.82	2.08	2.845 (3)	154
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 12{ }^{\text {iii }}$	0.82	2.64	3.075 (3)	115
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 9^{\text {iv }}$	0.97	2.42	3.366 (5)	166
C9-H9 . . O1	0.98	2.44	3.136 (3)	128
C25-H19C \cdots O 4	0.96	2.28	3.123 (4)	146
C22-H20B . . 99	0.97	2.42	3.258 (5)	144
$\mathrm{C} 24-\mathrm{H} 27 \mathrm{C} \cdots \mathrm{O} 12^{\text {iv }}$	0.96	2.48	3.443 (6)	175

Symmetry codes: (i) $1+x, y, z$; (ii) $x, y, 1+z$; (iii) $x, 1+y, 1+z$; (iv) $x-1, y, z$.
Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-NT (Bruker, 1997); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

organic papers

References

Appendino, G. (1995). Nat. Prod. Rep. 12, 349-360.
Bruker (1997). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Chattopadhyay, S. K., Sharma, R. P., Appendino, G. \& Gariboldi, P. (1995). Phytochemistry, pp. 869-870.
Mastropaolo, D., Camerman, A., Luo, Y., Brayer, G. D. \& Camerman, N. (1995). Proc. Natl Acad. Sci. USA, 92, 6920-6924.

Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

