organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sunil K. Chattopadhyay,^a Ashoke Sharon,^b Umesh Yadav,^b Sachin Srivastava,^a Vijay K. Mehta^a and Prakas R. Maulik^b*

^aChemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India, and ^bMolecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India

Correspondence e-mail: maulik_prakas@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.105 Data-to-parameter ratio = 8.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. A taxane diterpenoid from the needles of *Taxus* wallichiana

The title compound, 10,13-deacetyl-*abeo*-baccatin IV, $C_{28}H_{40}O_{12}$, crystallized in space group *P*1. The molecular structure shows that the *B/C* ring junction is *trans*-fused, while the *A* ring is in a *syn* conformation with respect to the *C* ring and *anti* with respect to the *D* ring. The conformations of the individual rings differ from each other. The molecule as a whole adopts a cage-type folded conformation. Intra- and intermolecular O-H···O and C-H···O hydrogen bonds, together with van der Waals interactions, stabilize the crystal structure.

Received 16 October 2001 Accepted 5 November 2001 Online 10 November 2001

CIMAP Communication No. 2001-53Ja.

Comment

Investigations on the taxoid constituents of different parts of *Taxus wallichiana* led to isolation of the title compound, (I). Taxoid (I) was isolated from the needles of *T. wallichiana* (Chattopadhyay *et al.*, 1995). Considerable attention has been given to this type of diterpenoid molecule whose archetype is the paclitaxel (TaxolTM), a promising cancer chemotherapeutic agent (Appendino, 1995). Although numerous X-ray investigations have been performed on this and related molecules, there is much heated debate about the active conformation of this anticancer drug (Mastropaolo *et al.*, 1995, and references therein). This prompted us to undertake the present X-ray study of the title compound, (I), to determine its crystal structure and stereochemistry unequivocally.

(I)

Fig. 1 shows the structure of (I) with the atomic numbering scheme. Selected torsion angles of the terpenoid core of (I) are listed in Table 1. The molecule contains a three-ring fused system A/B/C with an additional D ring attached to the ring C. The A ring is in a syn conformation with respect to the C ring and anti with respect to the D ring. The B/C junction is transfused due to the trans-axial dispositions of C25 at C8 and H3 at C3. Thus, the molecule as a whole adopts a folded cage-type conformation. Least-squares plane calculations indicate that the seven-membered B ring adopts a boat conformation [the deviations of atoms C1, C2 and C9 are 1.078 (4), 1.289 (4) and 0.553 (4) Å, respectively from the least-squares plane through

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity.

atoms C3, C8, C10 and C11]. The six-membered *C* ring is in an envelope conformation while the five-membered *A* ring is puckered to form an envelop. The molecular packing in the crystal shows that the hydroxyl groups are involved in both intra- and intermolecular hydrogen bonding of the type $O-H\cdots O$. In addition, the packing further reveals the presence of intra- and intermolecular $C-H\cdots O$ hydrogen bonding. Thus, $O-H\cdots O$ and $C-H\cdots O$ hydrogen-bonding interactions, along with van der Waals forces, stabilize the solid-state structure.

Experimental

Compound (I) was isolated from methanol extracts of the needles of *T. wallichiana* following the reported protocols (Chattopadhyay *et al.*, 1995). Diffraction quality crystals were grown at room temperature by slow evaporation of a methanolic solution.

Crystal data

C ₂₈ H ₄₀ O ₁₂	Z = 1
$M_r = 568.60$	$D_x = 1.282 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.957 (1) Å	Cell parameters from 26
b = 9.667 (1) Å	reflections
c = 9.827(1) Å	$\theta = 5.0-9.2^{\circ}$
$\alpha = 110.10 \ (1)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 92.42 \ (1)^{\circ}$	T = 293 (2) K
$\gamma = 110.39 \ (1)^{\circ}$	Block, colourless
$V = 736.2 (1) \text{ Å}^3$	$0.48\times0.35\times0.33$ mm

Data collection

Bruker P4 diffractometer
θ –2 ω scans
3060 measured reflections
3060 independent reflections
2941 reflections with $I > 2\sigma(I)$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -10 \rightarrow 1$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.043060 reflections 372 parameters H-atom parameters constrained

Table 1		
0 1 4 1	 1	$\langle 0 \rangle$

Selected torsion angles (°).

i = 11 / 11
3 standard reflections
every 97 reflections
frequency: 60 min
intensity decay: none

 $= -10 \rightarrow 10$ $= -11 \rightarrow 11$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0759P)^2 \\ &+ 0.0885P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.002 \\ \Delta\rho_{\rm max} = 0.18\ {\rm e}\ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.18\ {\rm e}\ {\rm \AA}^{-3} \end{split}$$

C11-C1-C2-C3	27.8 (3)	C3-C8-C9-C10	48.8 (3)
C14-C1-C2-C3	-82.9(3)	C8-C9-C10-C11	-53.1(3)
C15-C1-C2-C3	152.90 (19)	C9-C10-C11-C12	146.7 (2)
C1-C2-C3-C4	130.6 (2)	C9-C10-C11-C1	-33.9(3)
C1-C2-C3-C8	-96.5(2)	C14-C1-C11-C12	-11.9(3)
C2-C3-C4-C22	58.0 (3)	C15-C1-C11-C12	106.5 (2)
C8-C3-C4-C22	-74.2 (3)	C2-C1-C11-C12	-128.7(2)
C2-C3-C4-C5	159.8 (2)	C14-C1-C11-C10	168.6 (2)
C8-C3-C4-C5	27.5 (3)	C15-C1-C11-C10	-73.0(3)
C22-C4-C5-O4	10.3 (2)	C2-C1-C11-C10	51.8 (3)
C3-C4-C5-O4	-112.2 (2)	C10-C11-C12-C13	-179.3(2)
C22-C4-C5-C6	126.1 (3)	C1-C11-C12-C13	1.2 (3)
C3-C4-C5-C6	3.6 (4)	C11-C12-C13-C14	10.4 (3)
O4-C5-C6-C7	104.3 (3)	C12-C13-C14-C1	-17.7(3)
C4-C5-C6-C7	1.0 (4)	C11-C1-C14-C13	17.9 (3)
C5-C6-C7-C8	-38.1(3)	C15-C1-C14-C13	-100.9(3)
C6-C7-C8-C9	-176.44(19)	C2-C1-C14-C13	135.0 (2)
C6-C7-C8-C3	66.2 (2)	C5-C4-C22-O4	-10.4(2)
C4-C3-C8-C7	-60.0(3)	C3-C4-C22-O4	108.8 (3)
C2-C3-C8-C7	165.76 (19)	C4-C22-O4-C5	11.0 (2)
C4-C3-C8-C9	177.9 (2)	C6-C5-O4-C22	-132.9(3)
C2-C3-C8-C9	43.7 (2)	C4-C5-O4-C22	-10.8(2)
C7-C8-C9-C10	-66.2 (3)		

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D-\mathrm{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O7−H7···O1	0.82	2.02	2.740 (3)	146
$O1-H1\cdots O11^i$	0.82	2.08	2.883 (3)	168
O8−H8···O4 ⁱⁱ	0.82	2.08	2.845 (3)	154
O8−H8···O12 ⁱⁱⁱ	0.82	2.64	3.075 (3)	115
$C6-H6B\cdots O9^{iv}$	0.97	2.42	3.366 (5)	166
C9−H9···O1	0.98	2.44	3.136 (3)	128
C25−H19C···O4	0.96	2.28	3.123 (4)	146
C22-H20B···O9	0.97	2.42	3.258 (5)	144
$C24 = H27C \cdots O12^{iv}$	0.96	2 48	3 443 (6)	175

Symmetry codes: (i) 1 + x, y, z; (ii) x, y, 1 + z; (iii) x, 1 + y, 1 + z; (iv) x - 1, y, z.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL-NT* (Bruker, 1997); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *SHELXTL-NT*; software used to prepare material for publication: *SHELXTL-NT*.

References

- Appendino, G. (1995). Nat. Prod. Rep. 12, 349-360.
- Bruker (1997). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chattopadhyay, S. K., Sharma, R. P., Appendino, G. & Gariboldi, P. (1995). *Phytochemistry*, pp. 869–870.
- Mastropaolo, D., Camerman, A., Luo, Y., Brayer, G. D. & Camerman, N. (1995). Proc. Natl Acad. Sci. USA, 92, 6920–6924.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.